
CSCI 1951-W Sublinear Algorithms for Big Data Fall 2020

Lecture 14: Identity Testing, Poissonisation, Closeness Testing

Lecturer: Jasper Lee Scribe: Harman Suri

1 Identity Testing Setting

Given an explicitly known distribution q = (q1, ..., qn) over [n], and m i.i.d. samples from
some distribution p (also over [n]), we want to test whether,

• p = q, versus

• dTV(p,q) ≥ ε

with probability at least 2/3.
Note that this strictly generalizes the uniformity testing problem, as uniformity testing

is identity testing with q that is the uniform distribution over [n].
We again are interested in the sample complexity m required. We will show, as in the

uniformity testing case, that Θ(
√
n

!2
) samples are required. Note that because uniformity

testing requires Ω(
√
n

!2
) samples, so does identity testing, so we only need to show that

identity testing requires O(
√
n

!2
) samples.

2 Tester Construction

Motivation: In “traditional” statistics, you would attack this problem using Pearson’s χ2

test, which invovles computing the χ2 statistic

Z̃ =
!

i

(Ni −mqi)
2

mqi

where Ni is the number of occurrences of element i ∈ [n], and E[Ni] = mqi.
The issue with using this test statistic is that it may have large variance, and therefore

be difficult to analyze. So we will consider a modified χ2 tester that will suppress the
variance without changing the expectation in an uncontrolled manner.

Algorithm 14.1 Identity Tester

1. Take m samples from the unknown distribution p, and compute Ni.

2. Compute A = {i : qi ≥ !
50n}

3. Compute Z =
"

i∈A
(Ni−mqi)

2−Ni

mqi

4. Accept if and only if Z ≤ 1
10mε2

1

Note: There are many other optimal identity tester constructions, and using a modified χ2

test is only one of the possible approaches.

Example: Consider the distribution q defined by q1 = 1 − 1
n and qi = 1

n(n−1) for all
i ∕= 1, and consider the identity testing problem with the distribution p = q. With high
probability, we will only observe each element i at most once if we take O(n) samples (i.e. it
is very unlikely to observe something that is not element 1). If we look at the original χ2

statistic, and consider m = O(n), we see that:

(Ni −mqi)
2

mqi
≈ N2

i

mqi
=

#
0 Ni = 0

Θ(n) Ni = 1

This contrasts with the new construction as follows (note that N2
i −Ni = 0 if Ni = 1):

(Ni −mqi)
2 −Ni

mqi
≈ N2

i −Ni

mqi
=

#
0 Ni = 0

0 Ni = 1

So using the new construction in this case we have drastically reduced the variance of each
individual summand of the computed statistic as compared to the χ2 tester.

3 Poissonisation

Motivation: Note that the Ni in our statistic are dependent, as they must sum to m. This
makes analysis difficult as we cannot use tail bounds and Var[Z] has annoying covariance
terms. The solution to this dependence issue is to use Poissonisation.

Poissonisation: Instead of drawing m samples from distribution p, we will draw Poi(m)
many samples. That is, we first draw k ← Poi(m), and then draw k samples from p.

Because the Poissonisation process produces a random number of samples k that we
must draw from our distribution, we should be concerned if k could be too large (meaning
would be trying to draw too many samples) with nontrivial probability. However, for large
m, Poi(m) is well concentrated (see problem 5 on homework 1), so sampling a k that is
too large (compared to m) should not be a concern. What we are really gaining from
Poissonisation is captured in the following proposition:

Proposition 14.2 Suppose we draw Poi(m) samples from p. Then

1. Ni ← Poi(mpi)

2. All Ni are independent of each other.

We will accept this proposition without proof, and with it we will be able to analyze Var[Z]
without the covariance terms.

Note: A Poissonised tester taking Poi(m) samples can be simulated by a tester taking
deterministically 2m samples, and failing with at most poly (1

m) more probability. So we
have a theoretically rigorous way to transform a Poissonised tester into a non-Poissonised
one. In practice however, we can simply run the standard tester.

2

4 Upper Bound Analysis

Theorem 14.3 Algorithm 14.1 on input Poi(m = O(
√
n

!2
)) samples, tests identity to q

versus ε-far from q with probability at least 2/3

Proof Idea: By Proposition 14.2, Ni
i.i.d.← Poi(mpi). Therefore, we can calculate and bound

E[Z] and Var[Z], and then apply Chebyshev’s inequality. We will first calculate E[Z] and
Var[Z] given in the proposition below. Note that χ2(pA||qA) is the χ2 divergence between
p restricted to elements in A and q restricted to elements in A.

Proposition 14.4

E[Z] = m
!

i∈A

(pi − qi)
2

qi
= mχ2(pA||qA)

Var[Z] =
!

i∈A
2
p2i
q2i

+ 4m
pi(pi − qi)

2

q2i

Proof. For E[Z]:

E[Z] =
!

i∈A

E[(Ni −mqi)
2]− E[Ni]

mqi

=
!

i∈A

E[N2
i]− 2mqi E[Ni] +m2q2i − E[Ni]

mqi

We now use the fact that the Ni ← Poi(mpi), which means that E[Ni] = mpi. Furthermore,
Var[Ni] = mpi, so Var[Ni] = mpi = E[N2

i] − (E[Ni])
2 = E[N2

i] − m2p2i . So E[N2
i] =

mpi +m2p2i . This simplifies E[Z] from above as follows:

E[Z] =
!

i∈A

mpi +m2p2i − 2mqimpi +m2q2i −mpi
mqi

= m
!

i∈A

(pi − qi)
2

qi

For Var[Z]: See Appendix A of arxiv:1507.05952.

Given we now have exact expressions for the expectation and variance of Z, we want
to show that the expectations in the identical case and the ε-far case have some gap, and
that the variances in both cases are small enough so there is some constant probability
concentration that is separated by the threshold required in Algorithm 14.1. We now
bound the expectation and the variance in the two cases via the following Lemmas:

Lemma 14.5 Bounding expectation.

• If p = q, then E[Z] = 0.

• If dTV(p,q) ≥ ε, then E[Z] ≥ m!2

5 .

Lemma 14.6 Bounding variance. If m ≥ c
√
n

!2
for sufficiently large constant c,

• If p = q, then Var[Z] ≤ 4n ≤ 1
400m

2ε4.

3

https://arxiv.org/pdf/1507.05952.pdf

• If dTV(p,q) ≥ ε, then Var[Z] ≤ 1
100(E[Z])2.

We will first use these two lemmas to prove Theorem 14.3.

Proof of Theorem 14.3. Observe that by Chebyshev’s inequality,

P(Z > E[Z] +
√
3
$

Var[Z]) ≤ 1

3

P(Z < E[Z]−
√
3
$

Var[Z]) ≤ 1

3

If p = q, then E[Z]+
√
3
$

Var[Z] ≤ 1
10mε2 using Lemmas 14.5 and 14.6. Therefore, the

probability that Algorithm 14.1 will not accept (refer back to the acceptance condition) for
this p is less than or equal to 1

3 .

Similarly, if dTV(p,q) ≥ ε, then E[Z] −
√
3
$

Var[Z] ≥ (1 −
√
3

10)E[Z] > 1
10mε2, again

using the above Lemmas. So the probability of failing to reject this p is also less than or
equal to 1

3 .

We now continue with the proofs of Lemmas 14.5 and 14.6.

Proof of Lemma 14.5. If p = q, the proof is trivial using Proposition 14.4 and noting that
every summand will be 0. For the dTV(p,q) ≥ ε case, we use the result that dTV(pA,qA) ≥
1√
20
ε, where pA and qA are again p and q restricted to elements of A. Intuitively, this is

true because the set A constitutes only a tiny bit of probability mass in q, and showing the
statement is a good exercise. A proof can be found in Appendix B at arXiv:1507.05952.

We then recall that E[Z] was defined in terms of χ2(pA||qA), which we can expand as
follows:

χ2(pA||qA) ≥
%!

i∈A

(pi − qi)
2

qi

&
(
!

i∈A
qi)

≥
%!

i∈A
|pi − qi|

√
qi√
qi

&2

by Cauchy-Schwarz

= 4d2TV(pA,qA)

≥ 1

5
ε2 by the above result

So E[Z] = mχ2(pA||qA) ≥ 1
5mε2, which shows Lemma 14.5.

Proof of Lemma 14.6. We first make a claim to aid in the proof. The claim will be proved
after it is applied.

Claim 14.7 Var[Z] ≤ 4n+ 9
√
nE[Z] + 2

5n
1/4(E[Z])3/2

Using Claim 14.7, if p = q, then Var[Z] ≤ 4n. If dTV(p,q) ≥ ε, then by the assumption

that m ≥ c ·
√
n

!2
) for a sufficiently large constant c, we have from Lemma 14.5 that E[Z] ≥

1
5mε2 ≥ 4000

√
n. Then, Var[Z] ≤ O(E[Z])2 +O(E[Z])2 +O(E[Z])2 ≤ 1

100(E[Z])2

Thus it remains to prove Claim 14.7.

4

https://arxiv.org/pdf/1507.05952.pdf

Proof of Claim 14.7:

Recall from Proposition 14.4 that

Var[Z] = 2
!

i∈A

p2i
q2i

+ 4m
!

i∈A

pi(pi − qi)
2

q2i

We will bound each term separately. The first term can be expressed as:

2
!

i∈A

p2i
q2i

= 2
!

i∈A

q2i
q2i

+ 2
!

i∈A

%
(pi − qi)

2

q2i
+ 2

(pi − qi)

qi

&

We then note that 2 (pi−qi)
qi

=

'
(pi−qi)2

q2i
· 1, and so we can apply the AM-GM inequality

(and use the fact that
"

i
q2i
q2i

≤ n) to obtain:

2
!

i∈A

p2i
q2i

≤ 2n+ 2
!

i∈A

%
(pi − qi)

2

q2i
+

(pi − qi)
2

q2i
+ 1

&

≤ 4n+ 4
!

i∈A

(pi − qi)
2

q2i

≤ 4n+
200n

ε

!

i∈A

(pi − qi)
2

qi
by the fact that qi ≥

ε

50n

= 4n+
200n

ε

E[Z]

m

≤ 4n+
1

100

√
nE[Z] (for m sufficiently large)

Bounding the other term of Var[Z] :

4m
!

i∈A

pi(pi − qi)
2

qi · qi
≤ 4m

())*
!

i∈A

p2i
q2i

+!

i∈A

(pi − qi)4

q2i
by Cauchy-Schwarz

≤ 4m

'
4n+

1

100

√
nE[Z]

+!

i∈A

(pi − qi)4

q2i
by applying the bound from the first term

≤ 4m(2
√
n+

1

10
n1/4(E[Z])1/2)(

!

i∈A

(pi − qi)
2

qi
) because ‖x‖2 ≤ ‖x‖1

= (8
√
n+

2

5
n1/4(E[Z])1/2)E[Z]

Thus we have bounded both terms of Var[Z] within the bound given by Claim 14.7, which
in turn proves Lemma 14.6.

Note: In the identity testing setting, since we only need concentration in the constant
probability sense, and we are able to bound the variance, Chebyshev’s inequality alone is
able to give us something tight. Also, applying some of our known concentration inequalities
(e.g. Hoeffding’s) would not work as each summand of our statistic Z is unbounded.

5

5 Closeness Testing

Given an two unknown distributions p,q over [n], and m iid samples from each of p and
q, we want to test whether,

• p = q, versus

• dTV(p,q) ≥ ε

with probability at least 2/3.

Observation 14.8 Identity testing reduces to closeness testing by simulating samples from
known distribution q.

We state one optimal algorithm for the closeness testing problem.

Algorithm 14.9 (Closeness Tester)

1. Get samples from p,q and compute Xi, the number of times element i is seen from
the p samples, and Yi, the number of times element i is seen from the q samples

2. Compute Z =
"

i
(Xi−Yi)

2−Xi−Yi

Xi+Yi

3. Accept iff Z ≤ 1
8

m2

m+nε
2

The following theorem claims that this algorithm is optimal for closeness testing.

Theorem 14.10 (Chan, Diakonikolas, Valiant, Valiant 2014) Algorithm 14.9, on input

m1 = Poi(m = O(max(n
2/3

!4/3
,
√
n

!2
))) samples from p and m2 = Poi(m = O(max(n

2/3

!4/3
,
√
n

!2
)))

samples from q tests closeness of p,q (versus ε-far) with probability at least 2/3. Also,

no algorithm can take o(max(n
2/3

!4/3
,
√
n

!2
))) samples from both p and q and still succeed with

probability at least 2/3.

6

